Sparse Axis-Aligned Subspaces Bayesian Optimization (SAASBO)

Sparse Axis-Aligned Subspaces Bayesian Optimization (SAASBO)#

Type of optimizer algorithm: continuous inputs Ax (py3.10 in conda)

About#

This is an implementation of Sparse Axis-Aligned Subspaces Bayesian Optimization (SAASBO), proposed in [Eriksson and Jankowiak, 2021].

SAAS corresponds to a certain Gaussian Process model, in which lengthscales have priors that encourage sparcity. Moreover, the authors train the model following a fully Bayesian treatment, relying on e.g. No U-turn Sampling (NUTS).

How to run#

Warning

This solver runs in a different conda environment than base.

You can find a conda environment where this solver can run here.

If you have cloned poli-baselines locally:

conda env create --file src/poli_baselines/core/utils/ax/environment.ax.yml
conda activate poli__ax
import numpy as np

from poli.objective_repository import ToyContinuousBlackBox

from poli_baselines.solvers.bayesian_optimization.saasbo import SAASBO

f_ackley = ToyContinuousBlackBox(function_name="ackley_function_01", n_dimensions=2)

x0 = np.random.randn(2).reshape(1, -1).clip(-2.0, 2.0)
y0 = f_ackley(x0)

bo_solver = SAASBO(
    black_box=f_ackley,
    x0=x0,
    y0=y0,
)

bo_solver.solve(max_iter=10)

See more#

References#

References#

If you use this solver, we expect that you cite the following resources:

[1] Eriksson, D., & Jankowiak, M. (2021). High-dimensional Bayesian optimization with sparse axis-aligned subspaces. Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, 493–503. https://proceedings.mlr.press/v161/eriksson21a.html

[2] González-Duque, M., Bartels, S., & Michael, R. (2024). poli: a libary of discrete sequence objectives [Computer software]. MachineLearningLifeScience/poli


@inproceedings{ErikssonJankowiak:SAASBO:2021,
     title={High-dimensional Bayesian optimization with sparse axis-aligned subspaces},
     ISSN={2640-3498},
     url={https://proceedings.mlr.press/v161/eriksson21a.html},
     publisher={PMLR},
    author={Eriksson, David and Jankowiak, Martin},
    year={2021},
    month=dec,
    pages={493–503},
    language={en}
}

@software{Gonzalez-Duque:poli:2024,
author = {González-Duque, Miguel and Bartels, Simon and Michael, Richard},
month = jan,
title = {{poli: a libary of discrete sequence objectives}},
url = {https://github.com/MachineLearningLifeScience/poli},
version = {0.0.1},
year = {2024}
}