poli.objective_repository.white_noise.register.WhiteNoiseBlackBox#
- class poli.objective_repository.white_noise.register.WhiteNoiseBlackBox(batch_size: Optional[int] = None, parallelize: bool = False, num_workers: Optional[int] = None, evaluation_budget: int = inf)#
A toy black box function that generates standard Gaussian noise.
- Parameters
batch_size (int, optional) – The batch size for vectorized evaluation.
parallelize (bool, optional) – Whether to parallelize the evaluation.
num_workers (int, optional) – The number of workers for parallel evaluation.
evaluation_budget (int, optional) – The maximum number of evaluations.
- _black_box(x, context=None)#
Returns standard Gaussian noise.
- __init__(batch_size: Optional[int] = None, parallelize: bool = False, num_workers: Optional[int] = None, evaluation_budget: int = inf)#
Initializes a WhiteNoiseBlackBox.
- Parameters
info (ProblemSetupInformation) – The problem setup information.
batch_size (int, optional) – The batch size for vectorized evaluation, by default None (i.e. all of the input).
parallelize (bool, optional) – Whether to parallelize the evaluation, by default False.
num_workers (int, optional) – The number of workers for parallel evaluation, by default None (which corresponds to half the CPUs available, rounded downwards).
evaluation_budget (int, optional) – The maximum number of evaluations, by default float(“inf”).
Methods
__init__
([batch_size, parallelize, ...])Initializes a WhiteNoiseBlackBox.
reset_evaluation_budget
()Resets the evaluation budget by setting the number of evaluations made to 0.
set_observer
(observer)Set the observer object for recording observations during evaluation.
terminate
()Terminate the black box optimization problem.